Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
International Ocean Discovery Program Expedition 401 recovered 983 m of sediment from Portugal’s southwest margin in the northeast Atlantic Ocean at Site U1609 (37°22.6259′ N, 9°35.9120′ W; 1659.5 m water depth). This site was designed to recover the distal contourites deposited by the Mediterranean Overflow Water contour current from the late Miocene to the Pleistocene. We report semiquantitative elemental results from X-ray fluorescence scanning of sediment cores from Site U1609 (Holes U1609A and U1609B) scanned at a 4–5 cm resolution from ~202 to 509 m core depth below seafloor, Method A, equivalent to ~4.52 to ~7.8 Ma. Raw element intensities (in counts per second) for Al, Si, Ca, Ti, Mn, Fe, Rb, Sr, Zr, and Ba are presented here and correlated with lithofacies variations. We also identify biogenic-terrestrial input proportions and illustrate downcore cyclicity and correlation patterns between terrigenous components (Al, Si, Ti, Mn, and Ba), as well as their anticorrelations with biogenic (Ca and Sr) inputs. The cyclical variations in elemental ratios may help stratigraphic correlation between Holes U1609A and U1609B, astronomical tuning of the spliced record, and sedimentary interpretations of changes to the Mediterranean–Atlantic gateway and the bottom current circulation along the Atlantic margin of Portugal before, during, and after the Messinian Salinity Crisis.more » « lessFree, publicly-accessible full text available January 9, 2027
-
We demonstrate through high-fidelity particle-in-cell (PIC) simulations a simple approach for efficiently generating GeV electron beams with the necessary charge, energy spread, and emittance for use as an injector in a future linear collider or a next generation XFEL. A high quality injected bunch is generated by self-focusing an unmatched electron driver in a nonlinear plasma wakefield. Over pump depletion distances, the drive beam dynamics and self-loading effects lead to high energy, low-energy spread output beams. For plasma densities of , PIC simulation results indicate that self-injected beams with charge can be accelerated to 20 GeV with projected core energy spreads of , normalized slice emittances of , peak normalized brightness of , and transfer efficiencies of .more » « lessFree, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available July 22, 2026
-
Free, publicly-accessible full text available July 7, 2026
-
Free, publicly-accessible full text available July 7, 2026
-
Free, publicly-accessible full text available July 7, 2026
-
Free, publicly-accessible full text available July 7, 2026
-
Free, publicly-accessible full text available July 7, 2026
An official website of the United States government

Full Text Available